View In:
ArcGIS JavaScript
ArcGIS Online Map Viewer
ArcGIS Earth
ArcMap
ArcGIS Pro
View Footprint In:
ArcGIS Online Map Viewer
Service Description: The importance of examining multiple hierarchical levels when modeling resource use for wildlife has been acknowledged for decades. Multi-level resource selection functions have recently been promoted as a method to synthesize resource use across nested organizational levels into a single predictive surface. Analyzing multiple scales of selection within each hierarchical level further strengthens multi-level resource selection functions. We extend this multi-level, multi-scale framework to modeling resistance for wildlife by combining multi-scale resistance surfaces from two data types, genetic and movement. Resistance estimation has typically been conducted with one of these data types, or compared between the two. However, we contend it is not an either/or issue and that resistance may be better-modeled using a combination of resistance surfaces that represent processes at different hierarchical levels. Resistance surfaces estimated from genetic data characterize temporally broad-scale dispersal and successful breeding over generations, whereas resistance surfaces estimated from movement data represent fine-scale travel and contextualized movement decisions. We used telemetry and genetic data from a long-term study on pumas (Puma concolor) in a highly developed landscape in southern California to develop a multi-level, multi-scale resource selection function and a multi-level, multi-scale resistance surface. We used these multi-level, multi-scale surfaces to identify resource use patches and resistant kernel corridors. Across levels, we found puma avoided urban, agricultural areas, and roads and preferred riparian areas and more rugged terrain. For other landscape features, selection differed among levels, as did the scales of selection for each feature. With these results, we developed a conservation plan for one of the most isolated puma populations in the U.S. Our approach captured a wide spectrum of ecological relationships for a population, resulted in effective conservation planning, and can be readily applied to other wildlife species.
Map Name: Puma layers from K Zeller
Legend
All Layers and Tables
Layers:
Description:
Copyright Text: Zeller KA, Vickers TW, Ernest HB, Boyce WM (2017) Multi-level, multi-scale resource selection functions and resistance surfaces for conservation planning: Pumas as a case study. PLoS ONE12(6): e0179570.
Spatial Reference:
102100
(3857)
Single Fused Map Cache: false
Initial Extent:
XMin: -1.3126478864539316E7
YMin: 3925256.1641908786
XMax: -1.2962071078507708E7
YMax: 3992770.1918482636
Spatial Reference: 102100
(3857)
Full Extent:
XMin: -1.3133024719703915E7
YMin: 3881445.6667940095
XMax: -1.2955124719703915E7
YMax: 3982503.4717940097
Spatial Reference: 102100
(3857)
Units: esriMeters
Supported Image Format Types: PNG32,PNG24,PNG,JPG,DIB,TIFF,EMF,PS,PDF,GIF,SVG,SVGZ,BMP
Document Info:
Title:
Author:
Comments: The importance of examining multiple hierarchical levels when modeling resource use for wildlife has been acknowledged for decades. Multi-level resource selection functions have recently been promoted as a method to synthesize resource use across nested organizational levels into a single predictive surface. Analyzing multiple scales of selection within each hierarchical level further strengthens multi-level resource selection functions. We extend this multi-level, multi-scale framework to modeling resistance for wildlife by combining multi-scale resistance surfaces from two data types, genetic and movement. Resistance estimation has typically been conducted with one of these data types, or compared between the two. However, we contend it is not an either/or issue and that resistance may be better-modeled using a combination of resistance surfaces that represent processes at different hierarchical levels. Resistance surfaces estimated from genetic data characterize temporally broad-scale dispersal and successful breeding over generations, whereas resistance surfaces estimated from movement data represent fine-scale travel and contextualized movement decisions. We used telemetry and genetic data from a long-term study on pumas (Puma concolor) in a highly developed landscape in southern California to develop a multi-level, multi-scale resource selection function and a multi-level, multi-scale resistance surface. We used these multi-level, multi-scale surfaces to identify resource use patches and resistant kernel corridors. Across levels, we found puma avoided urban, agricultural areas, and roads and preferred riparian areas and more rugged terrain. For other landscape features, selection differed among levels, as did the scales of selection for each feature. With these results, we developed a conservation plan for one of the most isolated puma populations in the U.S. Our approach captured a wide spectrum of ecological relationships for a population, resulted in effective conservation planning, and can be readily applied to other wildlife species.
Subject: We extend this multi-level, multi-scale framework to modeling resistance for wildlife by combining multi-scale resistance surfaces from two data types, genetic and movement. Resistance estimation has typically been conducted with one of these data ty
Category:
Keywords: Puma
AntialiasingMode: None
TextAntialiasingMode: Force
Supports Dynamic Layers: false
MaxRecordCount: 1000
MaxImageHeight: 4096
MaxImageWidth: 4096
Supported Query Formats: JSON, geoJSON
Min Scale: 0
Max Scale: 0
Supports Datum Transformation: true
Child Resources:
Info
Supported Operations:
Export Map
Identify
QueryDomains
QueryLegends
Find
Return Updates
Generate KML